Abstract

The shaving process is well known as a precise sheet-metal die-cutting process to achieve a burnish depth through the material thickness. However, in recent years, the requirement of decreases in the rollover on shaved surfaces has become increasingly stringent. To attain this requirement, in the present research, a shaving die was developed and proposed. Based on a stress distribution analysis, a finite element method (FEM) simulation was used as a tool to clarify the cutting mechanism and rollover characteristics by using a conventional shaving die; afterwards, the conventional shaving die was developed, and a new shaving die was proposed to achieve decreases in the rollover. By comparing the cutting principle with that of a conventional shaving die, the concept design of a new shaving die that can achieve decreases in rollover was also clearly illustrated. The decreases in rollover could be successfully achieved by two mechanisms: increases in the compressive stress on the rollover zone and increases in the shaving allowance. The effects of the new shaving die geometries and shaving allowance on rollover were also investigated. To validate the FEM simulation results, laboratory experiments were carried out. The experimental results agreed well with the FEM simulation results in terms of the cut surface characteristics including the rollover, burnish depth, and fracture depth. Therefore, in the present research, it was revealed that the rollover on a shaved surface could be successfully decreased by using the new shaving die application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.