Abstract

A sequential data correction method using several experimental parameters of pulsed resonance ionization mass spectrometry was developed to reduce mass discrimination effects for isotope ratio analysis as well as fluctuations in the ion count rate. This correction method was applied to isotope ratio determination of stable titanium isotopes using a two-step, single color ionization scheme. A significant improvement of the precision of the measured isotopic ratio of stable titanium isotopes was demonstrated after correction with a parameter set consisting of laser power, atmospheric pressure, and laser frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.