Abstract

We report the development of a sensitive label-free, cost-effective detection system with simultaneous multi-channel measurement of open circuit potential (OCP) variations for the detection of prostate specific antigen (PSA). We demonstrate a significant increase of 600 times in the sensitivity as compared to the reported literature. To accurately measure OCP variations, a complete monolithic field-effect transistor (FET)-input ultra-low input bias current instrumentation amplifier is used to form the electronic circuit to measure the variation between a working electrode and a reference electrode. This amplifier electronic system setup provides a differential voltage measurement with high input impedance and low input bias current. Since no current is applied to the electrochemical system, a true and accurate measurement of the variation can be performed. This is the first report on the use of DNA aptamers with an OCP system where we employed a DNA aptamer against PSA. An optimised ratio of anti-PSA DNA aptamer with 6-mercapto-1-hexanol (MCH) was used to fabricate the aptasensor using gold electrodes. The electrodes are hosted in a cell with an automated flow system. A wide range of concentrations of PSA (0.1 to 100 ng/mL) were injected through the system. The sensor could potentially differentiate 0.1 ng/mL PSA from blank measurement, which is well below the required clinical range (>1 ng/mL). The sensor was also challenged with 4% human serum albumin and human kallikrein2 as control proteins where the sensor demonstrated excellent selectivity. The developed system can be further generalised to various other targets using specific probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.