Abstract
In the field of adaptive building technologies, this research introduces the development of a self-regulating solar shading actuator that utilizes the thermal shape memory effect. The study focuses on addressing the actuator’s performance under diverse environmental conditions. Thermal simulations were carried out during the development of the individual components of the actuator and for the prediction of specific switching temperatures. The investigation includes an analysis of the sunshade’s response to varying environmental conditions, emphasizing its effectiveness on clear summer days and identifying challenges during overcast periods. The critical coordination between the solar collector and the shape memory alloy (SMA) wire is examined, shedding light on the impact of SMA temperature dynamics on the actuation performance. Through the integration of simulation data and real-world measurements, the study validates the thermal model for the solar collector, establishing the robustness of the system’s operation. This research work contributes significantly to the development of intelligent actuators and outlines the importance of validation of SMA-based applications under real conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.