Abstract

The aims of this study were to explore the possibility of improving the design of self-inactivating (SI) retroviral vectors and to develop an SI vector that would allow optimal tet-on-regulated therapeutic gene expression. To minimize any interference between the viral promoter and the inducible promoter, we deleted different regulatory elements in the 3′LTR and examined their effects on transgene expression in transfected or transduced cells. In transfected cells, such deletions reduced the transgene expression. The insertion of a polyadenylation sequence could not completely compensate for this effect. We observed three patterns of transgene expression in cells transduced with these tet-on retroviral vectors: (1) high levels of both basal and inducible expression, (2) low levels of both basal and inducible expression, and (3) low levels of basal and high levels of inducible expression. After using the optimal vector to transduce muscle-derived stem cells, we were able to regulate the strong in vitro expression of transgenes—including enhanced green fluorescent protein and bone morphogenetic protein 4—via the addition or withdrawal of doxycycline (Dox). Implantation of the transduced cells and subsequent Dox-dependent induction of gene expression resulted in bone formation in vivo. Thus, we have developed an optimal SI retroviral vector that maintains a high titer, efficiently transduces muscle-derived stem cells, and enables both high levels of inducible gene expression in vitro and robust regulated bone formation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.