Abstract

MbtA is an adenylating enzyme from Mycobacterium tuberculosis that catalyzes the first step in the biosynthesis of the mycobactins. A bisubstrate inhibitor of MbtA (Sal-AMS) was previously described that displays potent antitubercular activity under iron-replete as well as iron-deficient growth conditions. This finding is surprising since mycobactin biosynthesis is not required under iron-replete conditions and suggests off-target inhibition of additional biochemical pathways. As a first step toward a complete understanding of the mechanism of action of Sal-AMS, we have designed and validated an activity-based probe (ABP) for studying Sal-AMS inhibition in M. tuberculosis. This probe labels pure MbtA as well as MbtA in mycobacterial lysate, and labeling can be completely inhibited by preincubation with Sal-AMS. Furthermore, this probe provides a prototypical core scaffold for the creation of ABPs to profile any of the other 66 adenylating enzymes in Mtb or the multitude of adenylating enzymes in other pathogenic bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call