Abstract

PCR-based molecular approaches including RAPD (random amplified polymorphic DNA), ISSR (inter-simple sequence repeat), and SRAP (sequence-related amplified polymorphism) are commonly used to analyze genetic diversity. The aims of this study are to analyze genetic diversity of M. oryzae isolates using PCR-based molecular approaches such as RAPD, ISSR, and SRAP and to develop SCAR marker linked to the pathogenicity of rice blast fungus. Twenty Magnaporthe oryzae isolates were collected mainly from the south of Vietnam and assessed for genetic variation by RAPD, ISSR, and SRAP methods. The comparison of those methods was conducted based on the number of polymorphic bands, percentage of polymorphism, PIC values, and phylogenetic analysis. Then, sequenced characterized amplified region (SCAR) markers were developed based on specific bands linked to fungal pathogenicity of rice blast fungus, M. oryzae. The results indicated that SRAP markers yielded the greatest number of polymorphic bands (174) and occupied 51.7% with polymorphism information content (PIC) value of 0.66. Additionally, the SRAP approach showed stability and high productivity compared with RAPD and ISSR. The SCAR marker developed from the SRAP method identified the presence of the avirulence AVR-pita1 gene involving fungal pathogenicity that can break down blast resistance in rice cultivars. The consistency of SCAR marker obtained in this study showed its efficiency in rapid in-field detection of fungal pathogenicity. SCAR marker developed from SRAP technique provides a useful tool for improving the efficiency of blast disease management in rice fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call