Abstract

Programmable materials are a novel development, in which specialized production processes are used to introduce a framework of information capabilities into the inner structure of materials. Since the design and fabrication of programmable materials are still challenging, this aims to introduce a design and fabrication concept to pave the way toward industrial application. Herein, complex shape morphing has been implemented in the sense that the shape changes in response to external conditions, following a predefined program. First, the feasibility of a fabrication concept for uniform metamaterials with auxetic behavior is presented. A material with a predetermined nonuniform inner structure that deforms to a symmetrical shape has been developed and fabricated according to this concept. More complex behavior can be implemented by facilitating optimization methods to find inner structures according to a target shape. Lastly, an optimized and producible design for asymmetrical shape morphing is described to demonstrate the applicability of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call