Abstract

BackgroundWe have developed crosslinked salmon-derived atelocollagen sponge, which has a denaturation temperature of 47 degrees Celsius. The purpose of this study is to evaluate the fundamental in vivo efficacy of the osteogenic protein (OP) -1 containing salmon-derived collagen sponge disc (SCS) on cartilage regeneration, using a rabbit model.MethodsA total of 24 rabbits were used in this study. In each animal, a full-thickness osteochondral defect was created in each femoral trochlea. Then, each 12 rabbits were randomly divided into the two groups. In Group I, an OP1-SCS disc was implanted into the defect in the right knee. In Group II, a SCS disc without OP-1 was implanted into the defect in the right knee. A control group of 12 rabbits was assembled from randomly-selected left knees from among the first two groups. In Group-III, we applied no treatment for a defect in the left knee to obtain the untreated control. All rabbits were sacrificed at 12 weeks after surgery. In each group, 10 animals were used for histological and immunohistological evaluations, and the remaining 2 were used for real-time polymerase chain reaction (PCR) analyses.ResultsIn Group I, a regenerated cartilage tissue rich in proteoglycan and type-2 collagen was found at 12 weeks, although the width was thicker than that of Group II. In Group II, the defect was filled with thick inhomogeneous tissues, including cartilage, fibrous, and bone tissues at 12 weeks. Concerning the gross observation and histological scores at 12 weeks, the ANOVA showed significant differences (p < 0.0001, and p < 0.0001, respectively). The post-hoc test indicated that the gross observation and histological scores of Group I was significantly greater than those of Groups II (p = 0.035, and p = 0.0104, respectively) and III (p < 0.0001, and p < 0.0001, respectively), while Group II was significantly greater than Group III (p = 0.0069, and p = 0.005, respectively). The real time PCR analysis showed that gene expression of type-2 collagen and aggrecan of Group I was greater than that of Group II.ConclusionsThe present study clearly demonstrated that the implantation of the OP1-SCS disc without any cultured cells may induce spontaneous hyaline-like cartilage regeneration to greater degrees than implantation of only the salmon-derived collagen sponge disc.

Highlights

  • We have developed crosslinked salmon-derived atelocollagen sponge, which has a denaturation temperature of 47 degrees Celsius

  • We have focused on osteogenic protein (OP)-1, which is called bone morphogenetic protein-7 (BMP-7)

  • The post-hoc test indicated that Group I was significantly greater than Groups II and III (p = 0.0350 and p < 0.0001, respectively), while Group II was significantly greater than Group III (p = 0.0069) (Figure 3)

Read more

Summary

Introduction

We have developed crosslinked salmon-derived atelocollagen sponge, which has a denaturation temperature of 47 degrees Celsius. Mammalian-derived atelocollagens, carry potential risks of disease (zoonosis) transmission, such as bovine spongiform encephalopathy (BSE), foot-and-mouth disease, and so on, to humans [5]. Fish-derived atelocollagen is known to be safe for human beings concerning the zoonosis transmission [6]. Fish atelocollagen has a potentially large pool source with a low cost [5]. Fish atelocollagen has a potential that can be an alternative to animal collagen. Fishderived atelocollagen, has not yet been used as a medical biomaterial because of its low denaturation temperature [7]. Fish-derived atelocollagen is transformed into gelatin at a human body temperature

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call