Abstract

Lung macrophages are the first line of defense against inhaled xenobiotics. They are able to accumulate airborne particulates as well as having metabolic capability. They may thus be sensitive indicator cells for detecting inhalation exposure to environmental mutagens. Their usefulness as a short-term in vivo genotoxic assay has not, however, been adequately explored. We have systematically investigated the feasibility of developing a lung macrophage chromosome-aberration assay. It was found that with different types of spindle-binding chemicals (vinblastine and vincristine), and with improved harvesting procedures, an adequate number of metaphase cells can be collected from mice and Chinese hamsters. The chromosome aberration frequencies in macrophages from control mice and Chinese hamsters were found to be 1.2 ± 2.3 and 0.75 ± 2.2 per 100 cells respectively. These frequencies are within normal ranges for other somatic cells. After inhalation exposure to an occupational-exposure level of benzene (0, 0.1 and 1 ppm), significant dosedependent induction of aberrations (1.2 ± 2.3, 5.7 ± 6.3 and 6.8 ± 6.2 chromatid deletions per 100 cells resp.) were observed in the macrophages. Thus, these cells can be used as one of a battery of in vivo assays for inhalation exposure studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call