Abstract
Comonomer content distribution (CCD), also commonly known as chemical composition distribution (CCD) and short chain branching distribution (SCBD), describes the variation of short chain branching composition between individual polymer chains in polyolefin materials. It is of particular importance for controlling polyolefin performance. Crystallization-based separation methods have evolved over the past four decades aiming at resolution, speed, precision, and accuracy. Two of the commonly used techniques are Crystallization Elution Fractionation (CEF) and Temperature Rising Elution Fractionation (TREF), where polymer chains are physically separated along the column or on the surface of the support based on their crystallinity, respectively. CEF analysis takes much less time than TREF. There is a critical need for precise temperature calibrations for data repeatability. This report demonstrates a novel CEF methodology using a two-point technique to consistently and conveniently calibrate the comonomer composition and column temperature. This column temperature calibration methodology was adopted in a study by tracking the reproducibility over a period of 8 years, using multiple instruments located in different laboratories and in different geographies. The results exhibited superior repeatability, with less than 0.3% of the relative error calculated from 3000 data points of the eluting peak temperature, thus demonstrating this as a robust method for industrial labs that require good quality controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.