Abstract

Histidine kinases are common sensory proteins used to detect environmental changes in bacteria. They respond to specific stimuli via a signal-input domain and alter gene expression through a cognate response regulator. The modulation/control of transcriptional regulation in cyanobacteria is important to reinforce the production of useful target compounds via photosynthesis without altering the growth profiles. For instance, heavy metal ions (Ni2+ and Cu2+), chemical inducers (IPTG), and a volatile compound (toluene) have been previously applied to regulate gene expression in cyanobacteria. However, most systems/regulators are only able to regulate gene expression once because it is impossible to eliminate them from the medium. To construct a reversible regulation system, a chimeric sensor, VanN_SphS, was developed by fusing the signal input domain of a quorum-sensing (QS) sensor, VanN, from Vibrio anguillarum, responding N-3-hydroxyhexanoyl-L-homoserine lactone (OHC6-HSL), with the kinase domain of SphS, a phosphate-deficiency sensor from the cyanobacterium Synechocystis sp. PCC 6803. After expression of the chimeric sensor in Synechocystis cells, responses to the various N-acyl-homoserine-lactones (AHLs) were evaluated by measuring the alkaline phosphatase (AP) activity, which is regulated by SphS. VanN_SphS responded only to OHC6-HSL and repressed AP activity. Then, the coexpression of the AHLs-degradation enzyme, Aii20J, a lactonase from Tenacibaculum sp. 20J, resumed the activity. This is the first report on the use of AHL-mediated transcriptional regulation in Synechocystis, which could be used in the future for the controlled production of useful compounds in the cyanobacterium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.