Abstract

A new micromachining method for the fabrication of micro-metal structures by using micro-reversible electrical discharge machining (EDM) was investigated. The reversible machining combines the micro-EDM deposition process with the selective removal process, which provides the ability of depositing or removing metal material using the same micro-EDM machining system. From the discharge mechanism of micro-EDM, the process conditions of micro-EDM deposition were analyzed firstly. Using the brass and steel materials as a tool electrode, the micro-cylinders with 200 μm in diameter and height-to-diameter ratio of more than 5 were deposited on a high-speed steel surface. Then the machining procedure was transformed easily from deposition to selective removal process by switching the process conditions. Different removal strategies including micro-EDM drilling and micro-EDM milling were used in the machining. Micro-holes with 80 μm in diameter are drilled successfully in the radial direction of the deposited micro-steel cylinder. Also, a brass square column with 70 μm in side length and 750 μm in height, and a micro-cylinder with 135 μm in diameter and 1445 μm in height are obtained by using micro-EDM milling. Finally, the characteristics of the deposited material were analyzed. The results show that the material components of a deposited micro-cylinder are almost the same as those of the tool electrode, and the metallurgical bonding has been formed on the interface. In addition, the Vickers-hardness of 454Hv of the steel deposited material is higher when compared to the hardness of 200Hv of the raw steel electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call