Abstract

Avian pneumovirus (APV) is a member of the genus Metapneumovirus of the subfamily Pneumovirinae. This study describes the development of a reverse-genetics system for APV. A minigenome system was used to optimize the expression of the nucleoprotein, phosphoprotein, M2 and large polymerase proteins when transfected into Vero cells under the control of the bacteriophage T7 promoter. Subsequently, cDNA was transcribed from the virion RNA to make a full-length antigenome, which was also cloned under the control of the T7 promoter. Transfection of the full-length genome plasmid, together with the plasmids expressing the functional proteins in the transcription and replication complex, generated APV in the transfected cells. The recombinant virus was passaged and was identified by cytopathic effect (CPE) that was typical of APV, the presence of a unique restriction-endonuclease site in the cDNA copy of the genome and immunofluorescence staining with anti-APV antibodies. Replacement of the full-length wild-type antigenome with one lacking the small hydrophobic (SH) protein and the attachment (G) genes generated a virus that grew more slowly and produced atypical CPE with syncytia much larger than those seen with wild-type virus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call