Abstract

BackgroundRespiratory Syncytial Virus (RSV) is an important human respiratory pathogen, particularly of infants and older adults, and despite several decades of research and development, no licensed vaccine is available. Studies have confirmed that enhancement of RSV disease does not occur after inoculation with RSV live-attenuated vaccine candidates, making such vaccines preferable. In this paper, reverse genetics was used to construct two recombinant viruses, a recombinant Long strain (rLong) and rLong-∆G-EGFP; rLong-∆G-EGFP is a recombinant mutant in which G was replaced with the EGFP gene, based on the Long strain of RSV.ResultsBoth rLong and rLong-∆G-EGFP were constructed successfully and recovered in Hep-2 cells, and autofluorescence was observed in rLong-∆G-EGFP-infected cells during consecutive passages. Titers of rLong and rLong-∆G-EGFP were ~100-fold lower than the parental strain. Although virulence was attenuated, high titers of neutralizing antibodies were induced in BALB/c mice after being inoculated with recombinant viruses in a three-dose schedule. Unexpectedly, the neutralizing antibody titer in rLong-∆G-EGFP-immunized recipients did not decline significantly compared with the rLong strain. Protective efficacy of recombinant viruses in lung tissue was up to 100%, and the serum neutralizing antibody levels could stabilize at 21 days with no significant fall post-challenge. Enzyme-linked immunospot (ELISPOT) assays showed that both recombinant viruses were capable of inducing CD8+ T cell immune responses, which are crucial for virus clearance, and that rLong stimulated a higher level of IFN-γ production by comparison. In terms of inducing a balanced immune response, rLong-∆G-EGFP elicited slightly higher levels of IgG2a antibodies and lower levels of IgG1/IgG2a than the rLong virus.ConclusionsThis study suggested that immunization with rLong and rLong-∆G-EGFP were immunogenic and protected against RSV infection in the lower respiratory tract of BALB/c mice better than in the nose. Because of a relative low IgG1/IgG2a ratio, rLong-∆G-EGFP was more inclined to make CD4+ T cells, shifting toward a Th1-type response, indicating that the generation of a more balanced Th1/Th2 response was desirable. This explorative study on the recombinant Long viruses also contributed to obtaining more RSV attenuated candidates by a reverse genetics approach.

Highlights

  • Respiratory Syncytial Virus (RSV) is an important human respiratory pathogen, of infants and older adults, and despite several decades of research and development, no licensed vaccine is available

  • Construction and identification of recombinant Long strain (rLong) and rLong-ΔGEGFP full-length cDNA clones A recombinant full-length cDNA clone of the RSV Long strain was constructed by stepwise assembly of six cDNA fragments, and the G gene within fragment C was replaced with an enhanced green fluorescent protein (EGFP) gene for constructing rLong-ΔG-EGFP

  • Virus in vivo, we found that the virulence of rLongΔG-EGFP was less than 1 log attenuated on day 3, suggesting that for the RSV Long virus, the replacement of G with the EGFP gene made a less attenuated phenotype in BALB/c mice

Read more

Summary

Introduction

Respiratory Syncytial Virus (RSV) is an important human respiratory pathogen, of infants and older adults, and despite several decades of research and development, no licensed vaccine is available. Studies have confirmed that enhancement of RSV disease does not occur after inoculation with RSV live-attenuated vaccine candidates, making such vaccines preferable. Respiratory Syncytial Virus (RSV) is an important pathogen of lower respiratory tract infections in newborn and young children, and a cause of severe lower respiratory tract inflammation in elderly and immunosuppressed patients. In the 1960s, the development of a formalin-inactivated RSV (FI-RSV) vaccine did not produce a protective effect in vaccinated recipients; on the contrary, it resulted in 80% of the patients being hospitalized, with two deaths. Despite several decades of research and development since no licensed vaccine is currently available

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call