Abstract

Newcastle disease virus (NDV) has only a single serotype but diversified genotypes. Genotype VII strains are the prevalent currently circulating genotype worldwide, and in particular, these strains cause outbreaks in waterfowl. In this study, a reverse genetics system for highly virulent NDV isolated from goose flocks was developed independent of conventional T7 RNA polymerase. Infectious virus was successfully generated by an RNA polymerase II promoter to drive transcription of the full-length virus antigenome. A green fluorescent protein (GFP)-expressing virus was generated by inserting an additional transcription cassette coding for the enhanced GFP between the P and M genes of the genome. The expression of GFP was confirmed by western blotting and fluorescence microscopy. The replication kinetics and pathogenicity of the recombinant viruses are indistinguishable from the parental wild-type virus. This reverse genetics system will provide a powerful tool for the analysis of goose-origin NDV dissemination and pathogenesis, as well as preparation for genotype-matched NDV attenuated vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.