Abstract
Measurement of transient pressure distribution on maritime structures is important for the assessment of the hydrodynamic loads applied. The commonly used pressure sensors are mostly bulky, need to be bolted to the structure, and/or only provide point-wise measurements. In this paper, an elastic matrix layer with a network of embedded piezoelectric sensors is proposed to address these issues. For experimental validation, a 400 × 400 × 5 mm epoxy layer is fabricated embedding 25 piezoelectric sensors on a square grid in accordance with Gauss-Lobatto-Legendre points. A finite element based inverse procedure is developed to reconstruct the pressure field from the electric potentials measured by the piezoelectric transducers. Feasibility of the concept is evaluated by measuring and reconstructing the pressure field generated by a travelling wave in a water tank. Sensitivity of the layer is also investigated through the experiments. The results indicate that the retrofit layer is capable of pressure field reconstruction, and that the presence of disturbances on the sensing surface does not affect the measurements in a notable way, while non-ideal conditions of the mounting can have a significant impact on the accuracy of the measurements. The results highlight the potential of the concept in pressure distribution measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.