Abstract

The purpose of this article is to describe the development of a remotely sensed, historical land-cover change database for the northwestern quarter of Chihuahua, Mexico, The database consists of multi-temporal land-cover classifications and change detection images. The database is developed to facilitate future investigations that examine urban–rural linkages as possible drivers of rural land-use and land-cover changes. To develop the needed land-cover change database, this study uses the North American Landsat Characterization (NALC) MSS triplicates because of their temporal depth and spatial breadth. Challenges exist, however, to effective classification and change detection using the NALC triplicates, including illumination differences across multiple scenes and periods caused by topographic and solar variations and the lack of ground reference data for historic periods. Therefore, creation of the database is a four step process. First, extensive pre-processing is performed to enhance comparability of multi-date images. Pre-processing includes topographic correction, mosaic creation and multi-date radiance normalization. Second, ancillary sources of land-cover data are combined with visual interpretations of enhanced images to define reference pixels used to classify the images using the maximum likelihood algorithm. Third, classification accuracy is assessed. Fourth, post-classification change detection is performed. Results indicate significant image improvements after pre-processing that permit very good overall classification (86.26% classified correctly) and change detection. To conclude, findings are presented that indicate significant changes to arid grasslands/shrublands and forest resources in mountainous regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call