Abstract

Aircraft operations statistics have typically received significant attention from U.S. airport owners and operators and state, local, and federal agencies. Accurate operational data is beneficial in assessing airports’ performance efficiency and impact on the environment, but operational statistics at nontowered general aviation airports are, for the most part, limited or not available. However, the increasing availability and economy of capturing and processing Automatic Dependent Surveillance-Broadcast (ADS-B) data shows promise for improving accessibility to a wide variety of information about the aircraft operating in the vicinity of these airports. Using machine learning technology, specific operational details can be decoded from ADS-B data. This paper aims to develop a reliable and economical method for general aviation aircraft flight phase identification, thereby leading to improved noise and emissions models, which are foundational to addressing many public concerns related to airports.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.