Abstract
Recently, assistive robots have attracted great attention from researchers in the rehabilitation field. These types of robots support patients to perform designated movements during a training process. Despite the existence of commercial rehabilitation systems, growing demands for improvement in both hardware and control design are evident. Therefore, this paper introduces a prototype pneumatic artificial muscle-based assistive robot named BK-Gait and its control strategy for trajectory tracking purposes. Firstly, a brief description of the robot mechanism is presented. Secondly, the mathematical model of the robot’s actuator is built. Third, an active disturbance rejection control (ADRC) strategy is developed to enhance the tracking performance of the robot. Finally, multi scenarios experiments are carried out to evaluate the applicability of the robot and the proposed controller in the rehabilitation field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.