Abstract

BackgroundMany members of Streptococcus and Enterococcus genera are clinically relevant opportunistic pathogens warranting accurate and rapid identification for targeted therapy. Currently, the developed method based on next generation sequencing (NGS) of the 16S–23S rRNA region proved to be a rapid, reliable and precise approach for species identification directly from polymicrobial and challenging clinical samples. The introduction of this new method to routine diagnostics is hindered by a lack of the reference sequences for the 16S–23S rRNA region for many bacterial species. The aim of this study was to develop a careful assignment for streptococcal and enterococcal species based on NGS of the 16S–23S rRNA region.MethodsThirty two strains recovered from clinical samples and 19 reference strains representing 42 streptococcal species and nine enterococcal species were subjected to bacterial identification by four Sanger-based sequencing methods targeting the genes encoding (i) 16S rRNA, (ii) sodA, (iii) tuf and (iv) rpoB; and NGS of the 16S–23S rRNA region.ResultsThis study allowed obtainment and deposition of reference sequences of the 16S–23S rRNA region for 15 streptococcal and 3 enterococcal species followed by enrichment for 27 and 6 species, respectively, for which reference sequences were available in the databases. For Streptococcus, NGS of the 16S–23S rRNA region was as discriminative as Sanger sequencing of the tuf and rpoB genes allowing for an unambiguous identification of 93% of analyzed species. For Enterococcus, sodA, tuf and rpoB genes sequencing allowed for identification of all species, while the NGS-based method did not allow for identification of only one enterococcal species. For both genera, the sequence analysis of the 16S rRNA gene was endowed with a low identification potential and was inferior to that of other tested identification methods. Moreover, in case of phylogenetically related species the sequence analysis of only the intergenic spacer region was not sufficient enough to precisely identify Streptococcus strains at the species level.ConclusionsBased on the developed reference dataset, clinically relevant streptococcal and enterococcal species can now be reliably identified by 16S–23S rRNA sequences in samples. This study will be useful for introduction of a novel diagnostic tool, NGS of the 16S–23S rRNA region, which undoubtedly is an improvement for reliable culture-independent species identification directly from polymicrobially constituted clinical samples.

Highlights

  • Many members of Streptococcus and Enterococcus genera are clinically relevant opportunistic pathogens warranting accurate and rapid identification for targeted therapy

  • Identification potential of Sanger sequencing methods for Streptococcus and Enterococcus species All strains from the collection were characterized by Sanger sequencing of the 16S rRNA, sodA, tuf and rpoB genes

  • Search of the GenBank database showed that the sequences for the 16S–23S rRNA region were available for 27 Streptococcus species and 6 Enterococcus species, while this study allowed for the obtainment and deposition of nucleotide sequences for the additional 15 and 3 species, respectively

Read more

Summary

Introduction

Many members of Streptococcus and Enterococcus genera are clinically relevant opportunistic pathogens warranting accurate and rapid identification for targeted therapy. The developed method based on generation sequencing (NGS) of the 16S–23S rRNA region proved to be a rapid, reliable and precise approach for species identification directly from polymicrobial and challenging clinical samples. The introduction of this new method to routine diagnostics is hindered by a lack of the reference sequences for the 16S–23S rRNA region for many bacterial species. Streptococci are capable to colonize human and animal mucous membranes and considered to be opportunistic pathogens, so in special conditions, they can cause acute infections [5]. The Enterococcus genus have been reported as the third most common causative agent of bacteremia and infective endocarditis [11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call