Abstract
Task allocation mechanisms are employed by multi-robot systems to efficiently distribute tasks between different robots. Currently, many task allocation methods rely on detailed expert knowledge to coordinate robots. However, it may not be feasible to dedicate an expert human user to a multi-robot system. Hence, a non-expert user may have to specify tasks to a team of robots in some situations. This paper presents a novel reduced human user input multi-robot task allocation technique that utilises Fuzzy Inference Systems (FISs). A two-stage primary and secondary task allocation process is employed to select a team of robots comprising manager and worker robots. A multi-robot mapping and exploration task is utilised as a model task to evaluate the task allocation process. Experiments show that primary task allocation is able to successfully identify and select manager robots. Similarly, secondary task allocation successfully identifies and selects worker robots. Both task allocation processes are also robust to parameter variation permitting intuitive selection of parameter values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.