Abstract

Frequency shift keying (fsk) mode of digital signal information transfer switches between two predetermined frequencies of the carrier wave, either by modulating one sine wave oscillator or by switching between two oscillators.The need for a receiver to decode an fsk signal along the transmitting medium from a digital source code within about 5 kilometer radius for security monitoring of environment informed this work. The design of a receiver circuit at a frequency of 500 kHzfor an input frequency shift keying (fsk) signal from a transmitter is presented. The receiver is to receive an RF signal, amplify it, filter it to remove unwanted signals, and recover the desired base band information. It consists of an amplifier, tuned circuitsand mixers which filters the base-band information. A comparator circuit is incorporated, to detect the digital signal received. The output from the comparators is the digital equivalent of the coded signals sent by the transmitter circuit, and transferred to a microcontroller circuit, to act as a coded signal representing information from the transmitting end. The bode-plot response of the receiver to the incoming signals using a FET tuned circuit, shows that only frequencies above 470kHz, and below 495kHz are allowed to pass through the network with a resonant frequency of 483.553 kHz and a gain of 27.734dB, while others are totally attenuated. The reliability of the designed receiver circuit was evaluated for a 1 year continuous operating period and was found to be 74.7%.Area of application of this work include electronic policing of a defined environment with good success.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.