Abstract

Optimal wave energy control is noncausal as the control command is optimized based on incoming wave force. Therefore, implementation of wave energy control requires forecasting of future wave force. A real-time latching control algorithm based on short-term wave force prediction is developed in this study to tackle such noncausality. The future wave forces are forecasted using a gray model. The receding horizon strategy is used to optimize the control command online, over the prediction horizon interval. Based on the predicted wave forces, the power extraction is maximized by locking and releasing the buoy alternately according to the optimized control command. Simulation results show that the power extraction is increased substantially with implementation of the developed real-time latching control algorithm, even if the future wave forces are predicted. Effects of prediction length and prediction error on the energy conversion are examined. It is found that more wave energy is harvested when a long prediction length is employed while prediction error decreases the control efficiency. The extreme load of power takeoff system increases when the wave energy control is implemented although its travel distance is hardly varied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.