Abstract
ABSTRACTAmong various strategies for sediment reduction, venting turbidity currents through dam outlets can be an efficient way to reduce suspended sediment deposition. The accuracy of turbidity current arrival time forecasts is crucial for the operation of reservoir desiltation. A turbidity current arrival time (TCAT) model is proposed. A multi-objective genetic algorithm (MOGA), a support vector machine (SVM) and a two-stage forecasting technique are integrated to obtain more effective long lead-time forecasts of inflow discharge and inflow sediment concentration. The multi-objective genetic algorithm (MOGA) is applied for determining the optimal inputs of the forecasting model, support vector machine (SVM). The two-stage forecasting technique is implemented by adding the forecasted values to candidate inputs for improving the long lead-time forecasting. Then, the turbidity current arrival time from the inflow boundary to the reservoir outlet is calculated. To demonstrate the effectiveness of the TCAT model, it is applied to Shihmen Reservoir in northern Taiwan. The results confirm that the TCAT model forecasts are in good agreement with the observed data. The proposed TCAT model can provide useful information for reservoir sedimentation management during desilting operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.