Abstract

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Tris (1-chloro-2-propyl) phosphate (TCIPP) and tris (2-chloroethyl) phosphate (TCEP) are three widely used organophosphate flame retardants (OPFRs) being frequently detected in human body fluids. Although OPFRs are being detected in human beings, the toxicological effects of their exposure are not clearly understood due to limited data. For this, a physiologically based kinetic model (PBK) was developed in MCSIM integrated with R studio and validated in rats to understand the toxicokinetics of OPFRs for the first time. The model required the enterohepatic recirculation (EHR) mechanism which was included to explain the non-linear data. Model parameters were optimized using the Bayesian framework (Markov Chain Monte Carlo) along with a visual fitting to explain toxicokinetic data. Goodness-of-fit was calculated to evaluate model predictability power in Rstudio. The model can appropriately predict the concentration of OPFRs in several organs like plasma, urine, kidney, etc. within 1–2-fold of experimental data. Slow elimination of OPFRs was observed from adipose tissue and brain at late time points, showing their potential to accumulate upon daily exposure. The use of PBK was demonstrated by reconstructing the oral exposure equivalent to the in-vitro toxic dose to support neurotoxic risk assessment. This version of PBK can be extrapolated to human for toxicological risk assessment. Nonetheless, further investigation is required to understand whether these chemicals follow similar kinetics in humans, which could lead to a greater risk to human health. Code availabilityThe model will be available to access through Rshiny using GIThub soon, InSilicoVida/Flame-Retardant-PBPK-Model: It contains organophosphate flame retardant (OPFRs) PBK for TDCIPP, TCIPP and TCEP (github.com).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.