Abstract

An animal model of spinal cord trauma is essential for understanding the injury mechanisms, cord regeneration, and to aid the development of new therapeutic modalities. This study focused on the development of a graded experimental contusion model for spinal cord injury (SCI) using a pneumatic impact device made in Korea. A contusive injury was made to the dorsal aspect of the cord. Three trauma groups were defined according to the impact velocity (IV). A control group (n=6), received laminectomy only. Group 1 (n=10), 2 (n=10), and 3 (n=10) had IVs of 1.5 m/sec, 2.0 m/sec, and 3.5 m/sec respectively. Functional assessments were made up to the 14th day after injury. The cord was removed at the 14th post-injury day and prepared for histopathologic examination. Significant behavioral and histopathological abnormalities were found in control and each trauma group. All trauma groups showed severe functional impairment immediately after injury but following different rates of functional recovery (Fig. 5). As the impact velocity and impulse increased, the depth of contusive lesion revealed to be profound the results show that the rat model reproduces spinal cord lesions consistently, has a distinctive value in assessing the effects of impact energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.