Abstract

Respiratory tract infections are associated with the most common diseases transmitted among people and remain a huge threat to global public health. Rapid and sensitive diagnosis of causative agents is critical for timely treatment and disease control. Here, we developed a novel method based on recombinase polymerase amplification (RPA) combined with CRISPR-Cas12a to detect three viral pathogens, including SARS-CoV-2, influenza A, and influenza B, which cause similar symptom complexes of flu cold in the respiratory tract. The detection method can be completed within 1 h, which is faster than other standard detection methods, and the limit of detection is approximately 102 copies/μL. Additionally, this detection system is highly specific and there is no cross-reactivity with other common respiratory tract pathogens. Based on this assay, we further developed a more simplified RPA/CRISPR-Cas12a system combined with lateral flow assay on a manual microfluidic chip, which can simultaneously detect these three viruses. This low-cost detection system is rapid and sensitive, which could be applied in the field and resource-limited areas without bulky and expensive instruments, providing powerful tools for the point-of-care diagnostic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call