Abstract
Neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) improves overall survival, but pathological response rates are low. Predictive biomarkers could select those patients most likely to benefit from NAC. Radiomics technology offers a novel, non-invasive method to identify predictive biomarkers. Our study aimed to develop a predictive radiomics signature for response to NAC in MIBC. An institutional bladder cancer database was used to identify MIBC patients who were treated with NAC followed by radical cystectomy. Patients were classified into responders and non-responders based on pathological response. Bladder lesions on computed tomography images taken prior to NAC were contoured. Extracted radiomics features were used to train a radial basis function support vector machine classifier to learn a prediction rule to distinguish responders from non-responders. The discriminative accuracy of the classifier was then tested using a nested 10-fold cross-validation protocol. Nineteen patients who underwent NAC followed by radical cystectomy were found to be eligible for analysis. Of these, nine (47%) patients were classified as responders and 10 (53%) as non-responders. Nineteen bladder lesions were contoured. The sensitivity, specificity, and discriminative accuracy were 52.9±9.4%, 69.4±8.6%, and 62.1±6.1%, respectively. This corresponded to an area under the curve of 0.63±0.08 (p=0.20). Our developed radiomics signature demonstrated modest discriminative accuracy; however, these results may have been influenced by small sample size and heterogeneity in image acquisition. Future research using novel methods for computer-based image analysis on a larger cohort of patients is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Urological Association journal = Journal de l'Association des urologues du Canada
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.