Abstract

The measurement of hotspot electron temperature is a paramount technique of implosion physics research in inertial confinement fusion. This study proposes a novel quasi-coaxis dual-energy flat spectral response high-resolution X-ray imaging instrument comprising a dual-channel total-reflection Kirkpatrick-Baez microscope and two flat non-periodic multilayer mirrors, which can image at 6.4 ± 0.5 and 9.67 ± 0.5 keV simultaneously. Various theoretical simulations were performed to verify the performance and feasibility of the imaging instrument, which was assembled and characterized in a laboratory. Experimental results show that the imaging instrument could achieve a high spatial resolution of 5 µm in a ± 150 µm field of view (FOV), the root mean square(RMS) deviation values of the measured reflection efficiency are 1.71% and 1.82% for the 6.4 keV and 9.67 keV imaging channels, respectively, in the ± 150 µm FOV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call