Abstract

BackgroundThe coronavirus disease 2019 (COVID-19) has brought a global disaster. Quantitative lesions may provide the radiological evidence of the severity of pneumonia and further to assess the effect of comorbidity on patients with COVID-19.Methods294 patients with COVID-19 were enrolled from February, 24, 2020 to June, 1, 2020 from six centers. Multi-task Unet network was used to segment the whole lung and lesions from chest CT images. This deep learning method was pre-trained in 650 CT images (550 in primary dataset and 100 in test dataset) with COVID-19 or community-acquired pneumonia and Dice coefficients in test dataset were calculated. 50 CT scans of 50 patients (15 with comorbidity and 35 without comorbidity) were random selected to mark lesions manually. The results will be compared with the automatic segmentation model. Eight quantitative parameters were calculated based on the segmentation results to evaluate the effect of comorbidity on patients with COVID-19.ResultsQuantitative segmentation model was proved to be effective and accurate with all Dice coefficients more than 0.85 and all accuracies more than 0.95. Of the 294 patients, 52 (17.7%) patients were reported having at least one comorbidity; 14 (4.8%) having more than one comorbidity. Patients with any comorbidity were older (P < 0.001), had longer incubation period (P < 0.001), were more likely to have abnormal laboratory findings (P < 0.05), and be in severity status (P < 0.001). More lesions (including larger volume of lesion, consolidation, and ground-glass opacity) were shown in patients with any comorbidity than patients without comorbidity (all P < 0.001). More lesions were found on CT images in patients with more comorbidities. The median volumes of lesion, consolidation, and ground-glass opacity in diabetes mellitus group were largest among the groups with single comorbidity that had the incidence rate of top three.ConclusionsMulti-task Unet network can make quantitative CT analysis of lesions to assess the effect of comorbidity on patients with COVID-19, further to provide the radiological evidence of the severity of pneumonia. More lesions (including GGO and consolidation) were found in CT images of cases with comorbidity. The more comorbidities patients have, the more lesions CT images show.

Highlights

  • The coronavirus disease 2019 (COVID-19) has brought a global disaster

  • Multi-task Unet network can make quantitative CT analysis of lesions to assess the effect of comorbidity on patients with COVID-19, further to provide the radiological evidence of the severity of pneumonia

  • A sharp increase in the number of cases due to humanto-human transmission has resulted in high rates of hospitalization and intensive care unit (ICU) admission, which caused an extreme shortage of medical resources [5]

Read more

Summary

Introduction

The coronavirus disease 2019 (COVID-19) has brought a global disaster. Quantitative lesions may provide the radiological evidence of the severity of pneumonia and further to assess the effect of comorbidity on patients with COVID-19. The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) broke out in Wuhan, China in December 2019. Up to July 28, 2020, 16,341,920 and 650,805 confirmed and death cases have been reported worldwide. The United States, as the largest epicenter, had the confirmed and death cases of 4,209,509 and 146,331, respectively [4]. A sharp increase in the number of cases due to humanto-human transmission has resulted in high rates of hospitalization and intensive care unit (ICU) admission, which caused an extreme shortage of medical resources [5]. It is especially important to use limited medical resources and social support for people with serious condition and prone to serious outcomes

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.