Abstract

Quantification of tendon stretch reflex requires precise measurement of the tapping force of a reflex hammer. A quantitative reflex (QR) hammer consisting of two cut rubber pieces from a generic rubber reflex hammer and a uniaxial force transducer was constructed. Finite element stress analyses were conducted to estimate the natural frequency characteristics of the hammer and to find the stress distributions during the impact. Pendulum impact testing was conducted at four different heights to assess the calibration linearity and repeatability of the measurement. The QR hammer had a fundamental natural frequency of 515 Hz and showed minimal displacement and stress at the tip from the finite element simulation of the impact. The QR hammer also provided reliable and repeatable measurements as demonstrated with high coefficients of determination, exceeding 0.994 and small coefficients of variations, less than 4%. The calibration linearity was 0.64% compared with the reference force platform measurement. The QR hammer demonstrated sufficient accuracy and reliability for precise clinical assessment of tendon stretch reflexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call