Abstract

Starting from an already known MMP-13 inhibitor, 1, we pursued an SAR-approach focusing on optimizing interactions close to the Zn2+ binding site of the enzyme. We found the oxetane containing compound 32 (MMP-13 IC50 = 42 nM), which exhibited complete inhibition of collagenolysis in in vitro studies and an excellent selectivity profile among the MMP family. Interestingly, docking studies propose that the oxetane ring in 32 is oriented towards the Zn2+ ion for chelating the metal ion. Chelating properties of MMP13-inhibitors are often connected with non-selectivity within the enzyme family. Compound 32 demonstrates a rare example where the selectivity can be explained via combinatorial effects of interactions within the S1′ loop and a chelating effect of the oxetane moiety. Furthermore, in vivo pharmacokinetic studies were performed demonstrating a concentration of 1.97 μM of 32 within the synovial fluid of the rat knee joint, which makes the compound a promising lead compound for further optimization and development for osteoarthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call