Abstract

The study of many diseases is limited by the in vitro systems available. Cystic Fibrosis-Related Diabetes (CFRD), the main co-morbidity of Cystic Fibrosis (CF), is a perfect example. Cells in vivo experience glucose fluctuations after meals. In contrast, cells cultured in vitro are initially exposed to high glucose media. Glucose gets progressively depleted until the next media change days later, which is not physiologically relevant and could negatively impact the results of research studies. To better study the mechanisms driving CFRD pathophysiology, we developed a programmable and automated cell culture system (PACCS) capable of mimicking acute hyperglycemic episodes experienced by CFRD patients after meals. We adapted a commercially available perfusion system and performed 3D modeling to develop this system. Results show that PACCS can be successfully used to culture airway epithelial cells, both immortalized and primary cells. Further, CF cells responded differently to meal-like conditioning when compared to controls, suggesting impaired adaptative responses in CF cells. Overall, PACCS will allow us to better study CFRD pathophysiology, and it could be used for a wide range of other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.