Abstract

In view of the serious problem of milling heat in milling nickel-based superalloys Inconel 718, this paper investigates the heat transfer performance of internal cooling in end milling Inconel 718, and the superiority of internal cooling milling cutter's heat exchange ability during processing is explored. The flow field characteristics of cutting fluid and milling temperature are studied by Computational Fluid Dynamics (CFD) and Finite Element Method (FEM). Compared with external flood cooling, the principle of internal cooling with excellent heat transfer performance is explained and the influence of coolant pressure on lubrication performance is analyzed. Experiments for end milling of Inconel 718 under different cutting speeds and cooling conditions have been carried out. The results indicate that the simulated and measured temperatures showed an acceptable agreement. The internal cooling has better heat transfer performance compared with flood cooling. With the increase of coolant pressure, the heat exchange efficiency is gradually enhanced. When the coolant pressure rises from 2 bar to 10 bar, the milling temperature at the measured point inside the workpiece reduces by 27.55 °C, the surface roughness reduces by 12.0%, the surface residual compressive stress increases by 68.37 MPa and better surface morphology is obtained. Besides, in the experimental range, with the increase of cutting speed, milling temperature increased, the pile-up effect on the sides of scratching was weakened and better machined surface integrity was found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call