Abstract
BackgroundPreoperative prediction of lymph node (LN) status is of crucial importance for appropriate treatment planning in patients with colorectal cancer (CRC). In this study, we sought to develop and validate a non-invasive nomogram model to preoperatively predict LN metastasis in CRC.MethodsDevelopment of the nomogram entailed three subsequent stages with specific patient sets. In the discovery set (n = 20), LN-status-related miRNAs were screened from high-throughput sequencing data of human CRC serum samples. In the training set (n = 218), a miRNA panel-clinicopathologic nomogram was developed by logistic regression analysis for preoperative prediction of LN metastasis. In the validation set (n = 198), we validated the above nomogram with respect to its discrimination, calibration and clinical application.FindingsFour differently expressed miRNAs (miR-122-5p, miR-146b-5p, miR-186-5p and miR-193a-5p) were identified in the serum samples from CRC patients with and without LN metastasis, which also had regulatory effects on CRC cell migration. The combined miRNA panel could provide higher LN prediction capability compared with computed tomography (CT) scans (P < .0001 in both the training and validation sets). Furthermore, a nomogram integrating the miRNA-based panel and CT-reported LN status was constructed in the training set, which performed well in both the training and validation sets (AUC: 0.913 and 0.883, respectively). Decision curve analysis demonstrated the clinical usefulness of the nomogram.InterpretationOur nomogram is a reliable prediction model that can be conveniently and efficiently used to improve the accuracy of preoperative prediction of LN metastasis in patients with CRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.