Abstract
An estimated 31.5 million Americans have a mobility limitation. Health care administrative data could be a valuable resource for research on this population but methods for cohort identification are lacking. We developed and tested an algorithm to reliably identify adults with mobility limitation in U.S. Department of Veterans Affairs health care data. We linked diagnosis, encounter, durable medical equipment, and demographic data for 964 veterans to their self-reported mobility limitation from the Medicare Current Beneficiary Survey. We evaluated performance of logistic regression models in classifying mobility limitation. The binary approach (yes/no limitation) had good sensitivity (70%) and specificity (79%), whereas the multilevel approach did not perform well. The algorithms for predicting a binary mobility limitation outcome performed well at discriminating between veterans who did and did not have mobility limitation. Future work should focus on multilevel approaches to predicting mobility limitation and samples with greater proportions of women and younger adults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.