Abstract

Enteral nutrition (EN) is essential for critically ill patients. However, some patients will have enteral feeding intolerance (EFI) in the process of EN. To develop a clinical prediction model to predict the risk of EFI in patients receiving EN in the intensive care unit. A prospective cohort study was performed. The enrolled patients' basic information, medical status, nutritional support, and gastrointestinal (GI) symptoms were recorded. The baseline data and influencing factors were compared. Logistic regression analysis was used to establish the model, and the bootstrap resampling method was used to conduct internal validation. The sample cohort included 203 patients, and 37.93% of the patients were diagnosed with EFI. After the final regression analysis, age, GI disease, early feeding, mechanical ventilation before EN started, and abnormal serum sodium were identified. In the internal validation, 500 bootstrap resample samples were performed, and the area under the curve was 0.70 (95%CI: 0.63-0.77). This clinical prediction model can be applied to predict the risk of EFI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.