Abstract

Commercial vegetable crop transplanters currently use several unsynchronised planting units mounted to a common transport frame. The objective of this work was to assess the performance of a new transplanting technology to improve the plant placement accuracy and spatiotemporal planting synchronization across adjacent rows, thus producing a grid-like planting pattern using adjacent vegetable crop transplanters. The feasibility of synchronisation of adjacent transplanting units for vegetable crops was demonstrated using tomato as the target crop. A colour, digital, high-speed computer vision analysis of the motion and dynamics of the plant trajectories of transplanted tomatoes was conducted. The high-speed video analysis led to the design and testing of an improved plant support mechanism to enhance the control and precision of the transplanting of vegetable crops. The absolute deviation values of the final location in the soil were reduced by approximately 25% for both the right planter and left planter compared to those in previous years. These results serve as the fundamental basis for a mechatronic system that can precisely transplant vegetable crops in a grid-like pattern across rows as a critical first step in a systematic approach to fully automated individual plant care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.