Abstract

Acanthamoeba keratitis is a debilitating eye disease that requires effective topical drug therapy. Currently, there is no standard in vitro test to evaluate anti-Acanthamoeba drugs. To develop a practical in vitro complete-kill assay to assess anti-Acanthamoeba drugs. Isolates of Acanthamoeba strains (n = 15) evaluated in a clinical laboratory. An in vitro laboratory assay was created to determine whether polyhexamethylene biguanide, 0.02%, chlorhexidine digluconate, 0.02%, hexamidine diisethioonate, 0.1%, and voriconazole, 1.0%, were effective in completely killing 15 different isolates of Acanthamoeba at time points of 24, 48, and 72 hours in comparison with a saline control. Each 0.5-mL volume of drug was inoculated with 0.1 mL of Acanthamoeba cysts (range, 1-3 × 10(6)/mL) (determined with a hemacytometer) and allowed to incubate at 30°C. At the time points listed, 0.05 mL from each treatment group was inoculated onto nonnutrient agar overlaid with Enterobacter aerogenes. The plates were microscopically examined for growth 1 and 2 weeks after inoculation. At 2 weeks, all plates were subcultured onto a fresh medium. At another 7 days, the growth in subculture at each time point was graded "1" for growth and "0" for no growth. The cumulative grades of 3 time points (range, 0-3) for each drug and isolate were nonparametrically compared to determine differences in growth between the drugs. The "kill" incidence rates over the 3 time points were also compared. In vitro testing determined that antiacanthamoebal efficacy (determined by the median growth grade and the kill incidence rate) was more prominent for hexamidine diisethioonate (median growth grade, 0.0; kill incidence rate, 93% [14 of 15 isolates]) and polyhexamethylene biguanide (median growth grade, 0.0; kill incidence rate, 80% [12 of 15 isolates]) than for chlorhexidine digluconate (median growth grade, 1.0; kill incidence rate, 40% [6 of 15 isolates]), voriconazole (median growth grade, 2.0; kill incidence rate, 13% [2 of 15 isolates]), and saline (median growth grade, 3.0; kill incidence rate, 0% [0 of 15 isolates]). The complete-kill assay appears to provide separation in the effectiveness of different antiamoebic drug solutions. This assay may be helpful for guiding topical Acanthamoeba therapy and providing a practical method to evaluate and screen new anti-infectives in the treatment of Acanthamoeba keratitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.