Abstract
AbstractThe present article describes a miniaturized potentiometric carbofuran chemical sensor on graphene nanosheets with incorporated lipid films. The graphene electrode was used for the development of a very selective and sensitive chemical sensor for the detection of carbofuran by immobilizing an artificial selective receptor on stabilized lipid films. The artificial receptor was synthesized by transformation of the hydroxyl groups of resorcin[4]arene receptor into phosphoryl groups. This chemical sensor responded for the wide range of carbofuran concentrations with fast response time of ca. 20 s. The presented potentiometric carbofuran chemical sensor is easy to construct and exhibits good reproducibility, reusability, selectivity, rapid response times, long shelf life and high sensitivity of ca. 59 mV/decade over the carbofuran logarithmic concentration range from 10−6 to 10−3 M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.