Abstract
Today, the importance of blood sugar monitoring in diabetic patients has created a global need to develop new glucometers. This article presents the fabrication of a portable smart glucometer for monitoring blood glucose with high sensitivity. The glucometer employs a bio-electronic test strip patch fabricated by the structure of Cu/Au/rGO/PEDOT: PSS on interdigitated electrodes. We demonstrate that this structure based on two-electrode can be superior to the three-electrode electrochemical test strips available in the market. It has good electro-catalytic properties that indicate high-performance sensing of blood glucose. The proposed bio-electronic glucometer can surpass the commercial electrochemical test strips in terms of response time, detection range, and limit of detection. Electronic modules used for the fabrication of smart glucometers, such as a power supply, analog to digital converter, OLED screen, and, wireless transmission module, are integrated onto a printed circuit board and packaged as a bio-electronics glucometer, enabling the comfortable handling of this blood glucose monitoring. The characteristics of active layers biosensors were investigated by SEM, and AFM. The glucometer can monitor glucose in the wide detection range of 0–100 mM, the limit of detection (1 µM) with a sensitivity of 5.65 mA mM−1 and excellent sensing performance such as high selectivity, high reproducibility, and good stability of fabricated test strips. With 11 human blood and serum samples, the glucometer demonstrated high clinical accuracy with the best value of RSD of 0.012.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.