Abstract

Tumor biopsies are an important aspect of oncology providing a guide for medical treatment and evaluation of disease progression. Highly heterogenous tumors have complex regions of active cancer cells interdigitated with necrotic tissue and healthy noncancerous tissue. The reliable access to tumor tissue pathology is therefore challenging and usually requires multiple needle insertions with accompanying patient discomfort and risk of infection. Oxygen levels provide a means of detecting and evaluating tumor tissue with levels reduced by 2-fold to 22-fold, depending on the type of organ. However, if the biopsy needle is placed in an area of normal tissue, there is always a chance that no diagnostic cells will be acquired for meaningful pathology and molecular analysis. While not the case in all tumors, there are cases where the in vivo oxygen levels differ with tumor cells having a value of pO2 lying between the anoxic necrotic tissue and normoxic normal tissue. The level of oxygen in tumor cells can also vary with time as related to complex biochemical pathways. The efficacy of radiation therapy is also sensitive to oxygen levels in tumors. Lower levels of oxygen present greater resistance to treatment. To address these concerns, a pO2-guided biopsy needle (OGBN) was developed to determine oxygen levels and fluctuations in highly resolved regions of tumors, in order to aide in determining the optimal region for cell sampling help in determining medical treatment options.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.