Abstract

The present study examines the nonlinear behavior of pneumatic, artificial muscles and investigates their availability for producing pressing forces over the experimentally determined tensile forces. It covers the design and manufacturing studies of a test setup and a pneumatic, artificial-muscle-based press to achieve this goal. The press design consists of a single pneumatic artificial muscle to provide the main pressing force and another two to bring the press back to the neutral position. The proposed approach is considered sufficient for thin sheet-metal punching molds and fills a gap in the spectrum of pressing technologies. A sufficient level of pressing force for thin sheet-metal punching is found to be achievable using a single 40-mm-diameter, pneumatic, artificial muscle. The results show that the press can produce (9.1, 23.1 and 36.9) kN pressing forces at (200, 400 and 600) kPa air pressures, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.