Abstract

Resistance temperature detectors are commonly used measurement sensors in heat transfer studies. In many resistance temperature detectors, the platinum resistance thermometer (PRT) is chemically stable, has a wide temperature measurement range and possesses high measurement accuracy. In phase change studies of carbon nanotubes, bi-porous structures for microelectronic thermal management, 100 nm thick PRTs are developed on silicon substrates with 10 nm titanium adhesive to achieve precise and interface-free temperature measurements. After an annealing at 375 °C, the PRT samples are calibrated at a temperature range from 20 to 180 °C. Measurement hysteresis of temperature appears in thermal cycles. Electrical resistance tends to become low during all heating periods, which establishes the maximum measurement deviation of 10 °C. Experimental results from two different thin-film PRTs indicate that accurate and repeatable temperature measurements can be achieved by either reducing heating speed or using data in the cooling period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.