Abstract

There are nine protein arginine methyltransferases (PRMTs 1-9) expressed in humans that vary in both subcellular localization and substrate specificity. The variation in substrate specificity between isozymes leads to competing effects that result in either activation or repression of tumor suppressor genes. Current methods used to study substrate specificity for these enzymes utilize radioisotopic labeling of substrates, mass spectrometry analysis of complex samples, or coupled assays that monitor cofactor degradation. Herein, we report the development of a rapid, nonradioactive, and sensitive method for screening multiple peptides in parallel to gain insight into the substrate specificity of PRMT enzymes. Our assay provides a major advantage over other high-throughput screening assays (e.g., ELISA, AlphaScreen chemiluminescence) by eliminating the need for purification of individual peptides and provides a timesaving, cost-effective alternative to the traditional PRMT assays. A one-bead one-compound (OBOC) peptide library was synthesized and subsequently screened against PRMT1 in a 96-well plate. This screen resulted in identification of a novel PRMT1 substrate with kinetic parameters similar to histone H4-21 (e.g., the best-known PRMT1 peptide substrate).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call