Abstract

The Institute for Advanced Technology (IAT) of The University of Texas at Austin (UT) is developing a plasma-driven railgun to launch low-mass projectiles of roughly 5–10 g to a velocity in excess of 7 km/s. Accomplishing this goal requires overcoming the problem of bore ablation, which has been linked to an observed velocity ceiling of about 6 km/s in plasma armature launchers. Bore ablation is a direct consequence of the intense heat radiated by plasma armatures. Controlling bore ablation requires a coordinated approach that includes: 1. using magnetic augmentation to reduce power dissipation in the plasma, 2. using high-purity alumina insulators to raise the ablation resistance of the bore, 3. using pre-acceleration to prevent ablation of the bore materials at low velocity, and 4. using a synchronously driven, distributed power supply to electrically isolate stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call