Abstract

Photochemical thrombosis is a method for the induction of ischemic stroke in the cerebral cortex. It can generate localized ischemic infarcts in the desired region; therefore, it has been actively employed in establishing an ischemic stroke animal model and in vivo assays of diagnostic and therapeutic techniques for stroke. To establish a rabbit ischemic stroke model and overcome the shortcoming of previous studies that were difficult to build a standardized photothrombotic rabbit model, we developed a photochemical thrombosis induction system that can produce consistent brain damage on a specific area. To verify the generation of photothrombotic brain damage using the system, longitudinal magnetic resonance imaging, 2,3,5-triphenyltetrazolium chloride staining, and histological staining were applied. These analytical methods have a high correlation for ischemic infarction and are appropriate for analyzing photothrombotic brain damage in the rabbit brain. The results indicated that the photothrombosis induction system has a main advantage of being accurately controlled a targeted region of photothrombosis and can produce cerebral hemisphere lesions on the target region of the rabbit brain. In conjugation with brain atlas, it can induce photochemical ischemic stroke locally in the part of the brain that is responsible for a particular brain function and the system can be used to develop animal models with degraded specific functions. Also, the photochemical thrombosis induction system and a standardized rabbit ischemic stroke model that uses this system have the potential to be used for verifications of biomedical techniques for ischemic stroke at a preclinical stage in parallel with further performance improvements.

Highlights

  • Photochemical thrombosis is a method for the induction of ischemic stroke in the cerebral cortex

  • In the case of T1-weighted images, there was a slight difference in the intensity of the area with brain damage immediately after and after 24 h of photothrombosis investigation, but it was not as high as that in the T2-weighted images

  • Were identified, the sizes and intensities of brain damage were maintained in a measure, and MR images at 72 h after photothrombosis indicated a decrease in both size and intensity of the photothrombotic stroke-induced lesion

Read more

Summary

Introduction

Photochemical thrombosis is a method for the induction of ischemic stroke in the cerebral cortex. To establish a rabbit ischemic stroke model and overcome the shortcoming of previous studies that were difficult to build a standardized photothrombotic rabbit model, we developed a photochemical thrombosis induction system that can produce consistent brain damage on a specific area. There is a limitation of photochemical vascular damage that can show physiological phenomena different from the actual clinical situation and progression, photochemical thrombosis is widely applied to the establishment of stroke-inducing animal models with localized brain damage and in the preclinical research of diagnostic and therapeutic techniques because it can precisely control the location and size of stroke-derived lesions by adjusting the location and light intensity. The photochemical thrombosis investigation system and analytical techniques of stroke and it-induced brain damage can be employed efficiently in preclinical studies of diagnostic and therapeutic methods using stroke rabbit models

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call