Abstract

ABSTRACTHydrogen-fed proton exchange membrane fuel cell (PEMFC) has to overcome high installation and operation cost before being adopted as a distributed power candidate. Cogeneration of power and heat is a good approach to increase hydrogen energy utilization rate. A PEMFC-based power and heat cogeneration system is proposed and established in the current study to investigate system’s technological and economical feasibility. This cogeneration of heat and power (CHP) system composes of a 2.5-kW fuel cell stack, hydrogen supply system, air supply system, water and heat management system, and heat recovery system. The control strategies to automate the system operation are realized by a programmable automation controller (PAC) system. Detailed measurement of the system is also constructed along with a web-based human–machine interface (HMI) platform to facilitate experiments and demonstration. Preliminary testing of the CHP system shows good performance of heat and power outputs. System’s electrical power conversion efficiency and thermal efficiency of the CHP system are measured at 38% and 35%, respectively. System combined efficiency therefore reached about 73%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call