Abstract

The spatial development and vegetation history of a large boreal peatland complex in east-central Alberta was reconstructed to examine factors that control peatland development in continental regions. Peat depth throughout the site was interpolated from over 300 depth measurements, and basal radiocarbon dates were obtained from 16 cores. Peat first initiated about 7400 calibrated 14C years BP (cal. BP), and early peat-forming communities were wet fens or marshes. Rates of expansion from these nucleation sites were dependent on both moisture availability and topography, with asynchronous expansion in different regions. Basal macrofossil assemblages suggest that paludification on slopes of large basins was the result of flooding caused by rising peatland water tables. In many areas that initiated after 3000 cal. BP, paludification involved invasion of upland forest by Sphagnum. Long-term apparent rates of peat accumulation were fastest in wet, moderate-rich fen areas where little community change has occurred over time. Macrofossil analysis of core profiles reveals a tendency for sites that initiated wet and minerotrophic to eventually be colonized by Sphagnum. However, the thickness of surficial Sphagnum layers differs between cores, and there are several examples of minimal or apparently reverse successional development.Key words: peatlands, boreal, paleoecology, vegetation succession, peat accumulation, paludification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call